Methane to Hydrogen by Means of Redox of Modified Iron Oxides

Sakae Takenaka, Van Tho Dinh Son, Chisa Yamada, and Kiyoshi Otsuka* Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552

(Received July 30, 2003; CL-030699)

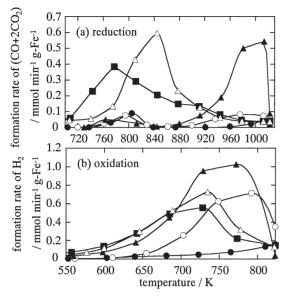
 CH_4 can be converted to pure H_2 by means of repeated reduction of modified iron oxides (Cu–Cr–FeO_x) with CH_4 and subsequent oxidation of the reduced oxides with H_2O .

 H_2 is expected to become an important energy carrier for sustainable energy consumption with a reduced impact on the environment. A hydrogen-based energy system is regarded as a viable and advantageous option for delivering high quality energy services. In particular, H_2 should be used as a fuel for H_2 – O_2 fuel cells due to high conversion efficiency of chemical energy of H_2 into electricity without emission of any pollutant gases. However, one of the major obstacles to utilize H_2 as an energy carrier is the lack of safe, efficient and low cost storage systems suitable for various stationary and mobile applications.

With regard to this problem, we have proposed a simple, safe, and environmentally benign technology for the storage and supply of H₂ to fuel cells. Our technology is based on a redox reaction of magnetite in Eq (1).

$$Fe_3O_4 + 4H_2 \leftrightarrow 3Fe + 4H_2O \tag{1}$$

The principle of technology is analogous to the old steam iron process. 2 Fe $_3$ O $_4$ is reduced with H $_2$ into Fe metal. The recovery and the supply of H $_2$ can be done by the reverse reaction, i.e. the reoxidation of Fe metal with H $_2$ O. By means of this method, one mol of Fe can store and regenerate 1.33 mol of H $_2$, which corresponds to 4.8 wt % of Fe metal. However, it should be noted that this method would stand on the condition that we can get cheap and pure H $_2$ in order to reduce Fe $_3$ O $_4$ into Fe metal.


At present, H_2 is produced through steam reforming of CH_4 , the main component of natural gas, followed by water gas shift reaction of CO. The steam reforming of CH_4 requires temperatures higher than 1000 K as well as a large amount of energy input because it is a high endothermic reaction. Moreover, the H_2 from the process contains ca. 25 vol % of CO_2 and intolerable impurity of CO (1–2 vol %), thus a further purification is usually indispensable for the supply of H_2 to fuel cells. Therefore, if Fe_3O_4 can be reduced directly with CH_4 instead of H_2 , our technology could be more attractive from the standpoint of the storage and supply of pure H_2 from natural gas as the primary energy source. In the present study, we demonstrate the possibility of a new technology for the storage and supply of H_2 based on CH_4 , i.e. Fe_3O_4 is reduced with CH_4 into Fe metal and subsequently Fe metal is oxidized with H_2O to form H_2 .

Iron oxide alone and with foreign metal additives (M) were prepared by co-precipitation from aqueous solutions containing cations of Fe and $\mathrm{M.^3}$ The amounts of added metal were adjusted to be 5 mol % of total metal cations. Hereafter, iron oxide samples without and with a foreign metal (M) were denoted as FeO_x and $\mathrm{M-FeO}_x$, respectively. Reduction of the iron oxide samples with $\mathrm{CH_4}$ (101.3 kPa) and the subsequent oxidation of the reduced samples with $\mathrm{H_2O}$ were carried out by using a conventional

gas-flow system. For the reduction, CH_4 was introduced into a tubular reactor packed with the iron oxide samples $(0.2\,\mathrm{g})$ at 473 K and the temperature at the reactor was raised to $1023\,\mathrm{K}$ by a rate of $3\,\mathrm{K\,min^{-1}}$. The temperature was kept at $1023\,\mathrm{K}$ until the formation of CO and CO_2 could not be observed. After CH_4 was purged out with Ar, H_2O vapor $(18.5\,\mathrm{kPa})$ was contacted with the reduced iron oxide samples at 473 K and the temperature was increased linearly with time to 823 K by a rate of $4\,\mathrm{K\,min^{-1}}$. The oxidation with H_2O was continued until the H_2 formation could not be observed. The reduction and the subsequent oxidation of the iron oxide samples were carried out repeatedly under the same conditions. During the reactions, a part of effluent was sampled out and analyzed by G. C. Detection limit of CO and CO_2 was ca. $0.1\,\mathrm{vol}$ %.

In the case of repeated redox reactions of Eq (1), we have reported that modification of iron oxides with Al, V, Cr, Ga, and Mo species prevented sintering of iron species, while iron oxide particles without those additives were deactivated dramatically during the redox due to the sintering. The modification of iron oxides with Rh or Ir improved the activity of both the reduction and oxidation. However, because of a high price of these precious metals, we should look for cheaper alternatives. In this work, we have looked for a favorable combination of non-precious metal additives to iron oxide for the repeated reduction with CH_4 and reoxidation of the reduced iron oxide with H_2O . The best modified iron oxide was Cu–Cr– FeO_x . We demonstrate the redox performance of this sample in comparison with other samples based on Cr– FeO_y .

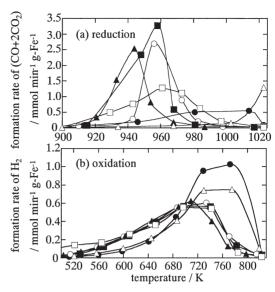

Figure 1 shows the results for the reduction with CH₄ and oxidation with H₂O for different iron oxide samples. As shown in Figure 1a, the formation of CO and CO₂ could be observed due to the reduction of iron oxide samples with CH₄. The formation of hydrogen was relatively slow compared to CO and CO₂, in particular, CO and CO2 were formed without H2 at early period of the reduction. Therefore, the hydrogen in the reacted methane was mostly used for the reduction of the iron oxide samples. However, the quantitative analysis of H₂O by G. C. in this work was not satisfactory. Therefore, the formation rate of CO_x (= CO + $2 \times CO_2$) was used as a reduction index of the iron oxide samples in this work. The rates were plotted against temperature in Figure 1a. Reduction of FeO_x or $Cr-FeO_x$ proceeded slowly in the temperature range 700-1023 K. On the other hand, addition of Rh, Ir, or Cu into Cr-FeO_x dramatically improved the reduction with CH₄. For the reduction of Rh-Cr-FeO_x, Ir-Cr-FeO_x and Cu-Cr-FeO_r, the maximum formation rates of CO_r were observed at around 770, 840, and 980 K, respectively. These results suggest that modification with Rh, Ir, or Cu enhanced the reduction of iron oxides with CH₄. For these samples, the formation of H₂ was accelerated after CO and CO2 were formed. These results suggested that H₂ was formed through the CH₄ decomposition catalyzed by reduced iron oxides.⁴ In fact, deposition of carbons could be observed on the iron oxide samples after the reduction with CH₄.

Figure 1. Changes of the formation rates of CO_x in the reduction with CH_4 and the formation rates of H_2 in the oxidation with H_2O for different iron oxide samples as a function of temperatures. \bullet , FeO_x ; \bigcirc , Cr– FeO_x ; \triangle , Cu–Cr– FeO_x , \triangle , Ir–Cr–Fe– O_x ; \blacksquare , Rh–Cr–FeO_x.

Figure 1b shows the results for the oxidation with H₂O of iron oxide samples reduced with CH₄. The formation rate of H₂ for Cr-FeO_x increased with a rise of temperatures from 550 to 770 K, although the reactivity of FeO_x was very low even at 823 K. Furthermore, Cu–Cr–FeO_x, Rh–Cr–FeO_x, and Ir–Cr–FeO_x formed H₂ at lower temperatures than Cr-FeO_x. The kinetic curves of H₂ formation were similar each other among the three samples (Cr–FeO_x with Cu, Rh, or Ir). During the oxidation with H₂O, a little formation of CO and CO₂ was also observed, although the results were not shown in Figure 1. These products would be formed by gasification of carbons deposited from CH₄ with H₂O. The total amounts of H₂, CO, and CO₂ formed during the oxidation with H₂O were roughly estimated by integrating the formation rates of these products through the whole temperature range (temperature was raised linearly with time). The amounts of H₂, CO, and CO₂ per 1 mol of Fe were 1.8, 0.01, and $0.11 \text{ mol for Cu-Cr-FeO}_x$, 1.4, 0.0, and $0.04 \text{ mol for Ir-Cr-FeO}_x$ and 1.3, 0.0, and 0.01 mol for Rh-Cr-FeO_x, respectively. The amount of H₂ formed for Cu-Cr-FeO_x was the highest among the three samples, probably because the H₂ produced by the gasification of deposited carbons with H₂O must be counted.

Figure 2 shows the results of the repeated redox cycles for Cu-Cr-FeO_x sample. From the first to the 7th cycle, the redox reactions were repeated under the same conditions as those shown in Figure 1. The results for the first, the third and the 7th cycle were shown in Figure 2. It is worth while noting that the peak for the formation rate of CO_x was shifted to lower temperatures with the repeated cycles, that is, Cu-Cr-FeO_x could be reduced more easily with the repeated cycles. In addition, the kinetic curves of H₂ formation did not change appreciably with the repeated cycles (2–7 cycles), except for the first one. Thus, the total amount of H₂ formed by the redox of Cu-Cr-FeO_x at each cycle was kept almost constant (ca. H₂ 1.3 mol per Fe 1 mol). The high maximum formation rate of H₂ at the first oxidation may be due to the contribution of the gasification of deposited carbons with H₂O. However, the formation of CO and CO₂ could not be observed at all from the third to the 7th oxidation.

Figure 2. Change of the formation rates of CO_x in the reduction with CH_4 and the formation rates of H_2 in the oxidation with H_2O for Cu–Cr– FeO_x as a function of temperatures. \bullet , the 1_{st} cycle; \bigcirc , the 3_{rd} cycle; \blacktriangle , the 7_{th} cycle; \triangle , the 8_{th} cycle; \blacksquare , the 10_{th} cycle; \square , the 11_{th} cycle.

After the 7th oxidation, the deposited carbons on the sample were oxidized with O_2 at 823 K. The oxidation of deposited carbons produced CO_2 in addition to a trace of CO. The total formation amount of CO_x was estimated to be 15.6 mol per 1 mol of Fe.

After the oxidation of deposited carbons described above, further three redox cycles of Cu–Cr– FeO_x were repeated, which correspond to the 8th and the 10th cycle in Figure 2. The reduction rate of Cu–Cr– FeO_x for the 8th cycle was very slow, but the reduction was improved for the 10th cycle. This observation was similar to that from the first to the third cycle, indicating that Cu–Cr– FeO_x is a quite stable redox mediator for the storage and supply of H_2 from CH_4 .

After the 10th oxidation, the $Cu-Cr-FeO_x$ was heated from 473 to 1023 K under a stream of Ar instead of CH_4 . CO and CO_2 were formed as shown in Figure 2a (the 11th cycle), although the maximum formation rate of them was lower compared to those under the CH_4 stream (the third, 7th and 10th cycle). At the 11th oxidation, a similar kinetic curve of H_2 formation to those for the other cycles was observed. This result indicated that deposited carbons from CH_4 worked as a reductant for $Cu-Cr-FeO_x$.

From the results described above, we concluded that H_2 without CO and CO₂ can be formed with high reproducibility through the repeated reduction of Cu–Cr–FeO_x with CH₄ and the subsequent oxidation of the reduced one with H_2O . Cu and Cr K-edge XAFS of Cu–Cr–FeO_x showed that Cu and Cr species were always present as Cu metal and ferrite containing Cr^{3+} ($Cr_xFe_{3-x}O_4$) during the redox. It is likely that $Cr_xFe_{3-x}O_4$ prevented the sintering of iron species and Cu metal worked as the sites which can activate CH_4 for the reduction and H_2O for the oxidation.

References

- K. Otsuka, A. Mito, S. Takenaka, and I. Yamanaka, Int. J. Hydrogen Energy, 26, 191 (2001).
- 2 P. B. Terman and R. Biljetina, Coal Process. Technol., 5, 114 (1979).
- K. Otsuka, T. Kaburagi, C. Yamada, and S. Takenaka, J. Power Sources, 122, 111 (2003).
- 4 R. T. K. Baker, J. J. Chludzinski, Jr., and C. R. F. Lund, Carbon, 25, 295 (1987).